On finite simple groups and Kneser graphs
نویسندگان
چکیده
For a finite group G let (G) be the (simple) graph defined on the elements of G with an edge between two (distinct) vertices if and only if they generate G. The chromatic number of (G) is considered for various non-solvable groups G.
منابع مشابه
On Laplacian energy of non-commuting graphs of finite groups
Let $G$ be a finite non-abelian group with center $Z(G)$. The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$. In this paper, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups..
متن کاملKneser Representations of Graphs
The Kneser graph Kn:k for positive integers n ≥ k has as its vertex set the k-element subsets of some n-set, with disjoint sets being adjacent. Every finite simple graph can be found as an induced subgraph of some Kneser graph; this can be viewed as a way of representing graphs by labelling their vertices with sets. We explore questions of finding the smallest representation (both in terms of n...
متن کاملSimplicity of Modules given by Oppositeness Relations in Spherical Buildings
Oppositeness graphs of a spherical building are generalizations of the classical Kneser graphs. Recently Brouwer [1] has shown that the square of each eigenvalue of the adjacency matrix of an oppositeness graph is a power of q, for buildings of finite groups of Lie type defined over Fq. Here we show that the incidence modules are simple. The essential part of the proof is a result of Carter and...
متن کاملOn the Regular Power Graph on the Conjugacy Classes of Finite Groups
emph{The (undirected) power graph on the conjugacy classes} $mathcal{P_C}(G)$ of a group $G$ is a simple graph in which the vertices are the conjugacy classes of $G$ and two distinct vertices $C$ and $C'$ are adjacent in $mathcal{P_C}(G)$ if one is a subset of a power of the other. In this paper, we describe groups whose associated graphs are $k$-regular for $k=5,6$.
متن کاملOn some Frobenius groups with the same prime graph as the almost simple group ${ {bf PGL(2,49)}}$
The prime graph of a finite group $G$ is denoted by $Gamma(G)$ whose vertex set is $pi(G)$ and two distinct primes $p$ and $q$ are adjacent in $Gamma(G)$, whenever $G$ contains an element with order $pq$. We say that $G$ is unrecognizable by prime graph if there is a finite group $H$ with $Gamma(H)=Gamma(G)$, in while $Hnotcong G$. In this paper, we consider finite groups with the same prime gr...
متن کامل